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Critical exponents of the three-dimensional random field 
Ising model 

Heiko Riegert and A Peter Young 
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Received 1 1  May 1993 

Abstract. The phase wnsition of the three-dimensional random field king model wilh a 
discrete (ik) field dishibution is investigated by extensive Monte Carlo simulations. Values 
of the critical exponents for the correlation lenglh. specific heat, susceptibility, disconnected 
susceptibilily and magnetization are determined simullaneously via finite size scaling. While 
the magnetization appears Lo be discontinuous. the specific heat appears to saturale, indicating 
no latent heat Sample-tc-sample Runuaions of the susceptibiliy are consistent with Ihe dmplei 
picture for the transition. 

The three-dimensional ferromagnetic king model with a random field (REM) shows a 
phase transition to long-range order at a critical temperature for a sufficiently small field 
strength [I]. However, the nature of this transition is still unclear; even the question of 
whether it is first- [Z] or second-order [3,4] remains unsettled The droplet theory of 
Villain [5] and Fisher 161 (see also Bray and Moore [7]) develops a self-consistent picture 
of the transition as well as a set of scaling relations between the critical exponents. Existing 
numerical studies have been unable to test the validity of these scaling relations because 
not all the exponents were calculated for any of the relations. The aim of this paper is to 
determine all critical exponents within a single numerical simulation in order to test the 
scaling relations predicted by the droplet picture. 

The droplet picture makes other predictions that are relevant to our simulations. One is 
that at and below the transition temperature T,, the susceptibility is expected to have large 
sample to sample fluctuations [SI. We therefore need to average over a large number of 
samples to get good statistics. Another prediction is thermally activated dynamical scaling 
[5,6] resulting in a dramatic slowing down in the critical region. This means very long 
equilibration times. For these reasons we had to confine ourself to modest lattice sizes and 
the critical exponents will be obtained via finite-size scaling. 

The Hamiltonian of the system is given by 

where Si = jz 1 are Ising spins and the first sum runs over all nearest-neighbour pairs on an 
L x L x L simple cubic lattice with periodic boundary conditions. The random fields hi 
in the second sum, running over all sites, take random values with the discrete probability 
distribution 

t Resent address: lnstilui fur Theoretische Physik, Universitrt eu Koln, DSWO K6ln 41. Federal Republic of 
Germany. 

0 3 0 5 - 4 4 7 0 / 9 3 ~ 0 5 2 7 9 0 7 . 5 0  @ 1993 IOP Publishing Ltd 5219 



5280 

The Monte Carlo (MC) simulations were performed on a transputer array using 40 T414 
transputers. We were able to obtain high performance by using a multi-spin coding algorithm 
described in [9]. in which each transputer simulates 32 physically different systems in 
parallel, each with a different random field realization. This is somewhat different from 
the implementation of multi-spin coding which was applied to the RFTM in [IO]. For each 
run at fixed temperature, T, and field strength, h,, we performed a disorder average over 
1280 samples. An average over such a large number of samples is necessary because the 
susceptibility is highly non-self-averaging, as mentioned before. The simulations were done 
for fixed ratio h, /T  at different temperatures. 

To check equilibration we simulated two replicas of the system: one starting from an 
initial configuration with all spins up and one with all spins down. We assumed that the 
system has reached equilibrium when the masetization measured for both replicas is the 
same (within the error bars). The time needed for equilibration of all 1280 systems varied 
much with the system size and temperaturein the case of the largest size ( L  = 16) we used 
up to 0.5 x IO6 MC-steps for equilibration and I .5 x IO6 MC-steps for measurements. All of 
the samples were equilibrated for L c 10. For larger sizes the number of non-equilibrated 
samples generally varied between 1% and 3%. The contribution of these samples was 
estimated to be less than the error bars in the points so no significant error was made by 
including them. The only exception to this was for L = 16, h, /T  = 0.5 for which 5% 
of the samples were not equilibrated which gave a significant error in the susceptibility, 
though not for the other quantities. We therefore ignored this data point when analysing the 
susceptibilty. 

For each sample and each replica ( U ,  b) we recorded the average magnetization per spin 
(M,,.h), its square (LV:,~), the average energy per spin ( E e . b }  and its square (E&).  The 
angular brackets, (. . .), denote a thermal average for a single random field configuration. 
From these data we get the specific heat per spin, C, the susceptibility x. the disconnected 
susceptibility, ,ydir, and the order parameter, m, as follows: 
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[CI.. = N{[(E*)I, - [ ( E ) * L J / ~ ~  I ~ I ,  = [ IW) I I~  
(3) 

k l a v  = N ( [ ( M 2 ) 1 a v  -[(M)’]av}/T [Xdirlk = N[(M)’]av 

where [. . .Iav denotes the average over different random field configurations. 

scaling functions for the above quantities read 
Defining t = T - T, (the deviation from the critical temperature), then the finite-size 

T ~ [ c ] , ,  = Lu/”2( tL’ /”)  [m],, - - L-fl/ufi(tLl/v) 
(4) 

7 [X]av = L’-‘g(tL’’”) [X,jis]av = L4-7,&is(tL1/”) 
where a i s  the specific heat exponent, @ the order parameter exponent, U the correlation 
length exponent and IJ  and i j  describe the power-law decay of the connected and disconnected 
correlation functions, see, e.g., [ I ] .  Note that the susceptibility exponent is given by 
y = (2 - q)u.  According to the droplet picture [SI, the average susceptibility diverges 
evelywhere below T,, because there is a small probablity that a given sample will have 
two degenerate minima with different values of the magnetization. If. by analogy with the 
above expressions, we write [XI, - Lz-q for T < T,, then one finds [8] that q = 0.5 in 
d = 3. 

The scaling function c ( x )  has a maximum at some value x = x’.  For each lattice size 
we estimate the temperature T’(L).  where T2[CIav is maximal. Since t * (L)  L’/” = x* we 
obtain in this way the critical temperature T, and the correlation length exponent v from 

t ’ (L )  T * ( L )  - T, = x*L-’/” , (5) 
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We denote the value of T'(L)*C at this temperature T*(L)  by C* and similarly for the other 
quantities in (4). In the vicinity of x* the scaling function C ( x )  can be approximated by a 
parabola Therefore three temperatures near the maximum of the specific heat are enough to 
determine the values of T*(L)  as well as [C'], etc. Our results for the exponents obtained 
in this way are summarized in table 1. For illustration, we show the results for T*(L) ,  
[c'],, [x*l,, [m*l, and [&Im for h, /T  = 0.35 in figure l (aHd) .  Several comments 
need to be made. 

Table 1. The aitical exponents obtained via finite-size scaling according to the procedure 
described in the wt. 

Exponent 025 0.35 0.5 

T. 3.9*0.1 3.55f0.05 3.05&0.05 
" @ 1.6*0.3 1.4f0.2 
U 

1 = -OS' *0'05 -1.0 i 0.3 -1.5 f 0.3 
v 0.60 & 0.03 0.56 * 0.03 0.6 * 0.1 
v 
t l = 2 - i i + l l  1 . 6 f O . 1  1.6iO.1 1 , f i i O . l  

0 0 0 0 

0.97 * 0.08 1.00 0.06 1.04 & 0.08 - 

(d - 4 +?j)u/Z 0 * 0.05 0 f 0.05 0 * 0.05 

(d -@)U 2.3 * 0.5 2.0 0.6 
2-U 3.0 & 0.3 3.5 f 0.3 

(i) The higher the field strength the harder it is to equilibrate the samples. However, 
the lower the field the less pronounced is the random field behaviour for small lattice sizes 
because of crossover from pure lsing model behaviour. Therefore investigation of larger 
as well as smaller ratios, h , / T ,  did not seem to us to be advisable. If the transition is of 
second order and no hicritical point occurs along the critical line (Tc, h,) the exponents 
should be universal, i.e. independent of the value of h , / T .  

(ii) The shift of T*(L) with mpect to T, becomes smaller for low field sbength, so it is 
harder to determine the exponent U. In case of h, /T  = 0.25 it was not possible to perform 
an acceptable fit for T'(L) according to (5). The values of U obtained for the other ratios 
h , / T  are somewhat higher than that obtained in [4], where U = 1.0f0.1. 

(iii) We did not find any indication of a divergence, even logarithmic, of the specific 
heat, so (Y is negative. This is different from what is found experimentally [I, 1 I], where 
the specific heat diverges logarithmically, corresponding to (I = 0. Furthermore, in OUT 

simulations (Y seems to get more negative with increasing ratio h , / T .  This may indicate 
that it is difficult to determine (Y when (I is negative because non-singular (but temperature- 
dependent) background terms can give a significant contribution to the specific heat. 

(iv) The order parameter [m"lav shows only a very small size dependence, and does not 
approach zero but lim~,,[m*]~~ e 0.52, 0.50 and 0.47 for h, /T  = 0.5, 0.35 and 0.25, 
respectively (see the inset of figure I(d)). This indicates that p = 0 so the magnetization 
has a discontinuity. This seems surprising in view of our results for the specific heat since 
the specific heat usually diverges as Ld [I31 at a first-order transition, because of the latent 
heat, whereas our specific heat data seem to saturate for large L. Perhaps the latent heat is 
so small that L" behaviour would only be seen for larger sizes. Another possiblity is that 
the correlation length actually diverges and there is strictly no latent heat, even though the 
order parameter has a discontinuity. This behaviour, though mre, does occur: an example is 
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Figure 1. The mulls of icast-squam fiu to data oblained by the procedure described in the 
text for h, /T = 0.35. 'lie points indialed by diamonds (0) mrrespond to lattice sizes L-4. 
6, 8, IO. 12, 16-fmm right to left in (U) and (b)  and left to right in (c)  and (d). With the 
exception of the susceptibility we also inserted &la for L = 24 wilh squares (0). which we 
oblained by using the same algorithm but on a CRAY Y-MP insread of the mnspucer array and 
which a~ averaged over only 64 samples. The L = 24 data were not used for the least-squares 
he. (0) The temperature T’(L)  of he specific heat maximum vers!s L-’I” with v = 1.64 
and = 3.552, see equation (5). (b)  Specific heat [C*], 5 L’/”C(x*) versus L-’/” with 
a = 1.04 and v as in (0). see equations (4) and (5). The spcihc heat appem to saturale for 
L + m at a value of l i m b m [ C * h  zz 25.3. (c) Susceptibility [x*lw 3 L 2 - l i ( x * )  in a 
log-log plot The slope of the slraight line is 2 - I )  with IJ  = 0.53. The i n s t  shows the second 
moment [x”].~ of the pmbability distribution P(x) in a log-log plot The slope of he shaight 
line is < = 3.82. (d) Disconnected susceptibiliiy [x&].. L’T,fdi.(x‘) in a log-log plot The 
slope is 4 -7 with 7 = 1.0. ’Ex inset shows the magnetization [ma],, L-#/”fi(x’) as a 
function of a L (the scale of the x axis is logarithmic) The slraight line is the extrapolation to 
[m’I,(L = w), which is clearly non-rem and so 6 = 0. 

the onedimensional lsing model with long-range interactions which fall off with distance as 
1 jrZ [14]. In such cases one may prefer not to denote the transition as first order, since there 
are well defined critical exponents. (At a conventional first-order transition, the correlation 
length is finite at the transition, so one cannot define asymptotic critical exponents, though 
it may be possible to define effective exponents if the correlation length is very large at Tc.) 

(v) For the exponent q we get a best estimate that is slightly higher than 4, which is the 
value obtained below Tc, as discussed above, and also the value at Tc if the transition is first 
order [81. However, the value q = 0.5 is not excluded by our data. For h , / T  = 0.5 we had 
to exclude the size L = 16 from the analysis since 5% of our samples were not equilibrated 
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and the contribution of these samples was larger than the error bars. Our estimates for q 
are consistent with that obtained in [3]: q = 0.5 f 0.1. 

(vi) The exponent i j  for the disconnected susceptibility h m s  out to be equal to one, so 
that the scaling relation 

B = (d - 4 i $VIZ 

q < 2v 

(6) 
is fulfilled (as indicated in table 1). We also see that the Schwartz-Soffer 1121 inequality 

(7) 
holds as an equality within the error bars. In 141 it was found that i j  = 1.1 3tO.1. 

(vii) In the droplet picture [5,6] 0 = 2-i j+q is called the violation of the hyperscaling 
exponent. The hyperscaling relations then have the spatial dimension, d ,  replaced by d - 0, 
e.g. 

2 - C Y  = (d - 0 ) v .  (8) 

- 

As indicated in the table this equality seems not to be fulfilled, although the error 
bars are quite large and OUT mimate for CY might be affected by temperaturedependent 
background terms, as discussed above. The estimates of both sides of this equation cannot 
be made without knowing both CY and U but for h,/T = 0.25 we only determined the ratio. 
The entries in table 1 for 2 - (Y and (d - S)v are therefore left blank for h,/T = 0.25. 

(viii) One of the main predictions of the droplet picture [5,6] is a long tail in the 
distribution of the susceptibility ,y for samples of size L at T = Tc [8]. An analysis of this 
distribution extracted €mm our results for the 1280 samples confirms the existence of this 
long tail. Figure 2 shows the histograms for the probability distribution Pk) close to the 
temperature (T = 3.80 for L = 8 and T = 3.75 for L = 16) for h,/T = 0.35. The 
second moment of this distribution [x ’~] , ,  shown in the inset of figure I@), scales l i e  
L?, with < = 3.8 i 0.1 (for h , / T  = 0.35). which is larger than the square of the mean 
L4-2q - Lz”. but somewhat smaller than the predicted value < = 6 - i j  - q raj 4.4 [8]. We 

h 

v 
x 
a 

100 150 200 

x 

,041 , I , , I , , I , I 

x 
Figure h The hislograms for the pmbability distribution P ( x )  of the susceptibility for L = 8 
(left-hand plot) and L = 16 (right-hand plot) with h,/T = 0.35. The temperatuns are chosen 
to be as close to T Y L )  as possible: T = 3.80 for L = 8 and T = 3.75 for L = 16. They axes 
of the inserts are scaled diffemntly to emphasize the long tail of the distribution This featun 
originates in the lil~ samples with the extrrmely large values of h e  sumptibility scaling with 
the volume of the system (sincc 4 - i j  % 3). 
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attribute this difference in t to the number of samples being too small to catch a sufficient 
number of rare samples which dominate the higher moments. 

In conclusion, while the data for the magnetization and disconnected susceptibility 
indicate fairly convincingly that the magnetization has a discontinuity, the specific heat 
seems to saturate to a finite value and so there is no detectable latent heat. This may arise 
either because the transition is first order in the conventional sense (so the latent heat, though 
present, is too small to detect and the estimated exponents are only effective exponents) or 
because the transition has a divergent correlation length (so me asymptotic exponents can 
be defined) and yet also has a discontinuity in the order parameter. It is interesting to ask if 
the order of the transition might be different for a different random field distribution, since 
mean-field theory predicts [15] that the transition becomes first order for large fields for the 
fh distribution, but not, for example, for the Gaussian distribution. Since the multi-spin 
coding technique that we used does not work for a continuous distribution of fields, the 
answer to this question will require an even larger computing effon Nevertheless we are 
currently attempting to cany out similar calculations for the Gaussian distribution. 

Our results are consistent with the Schwartz-Soffer inequality, equation (7). being 
satisfied as an equality, and support the scaling relation, equation (6). The scaling relation 
involving the specific heat, equation (8). does not seem to be satisfied, though our values for 
LY may only be effective exponents, particularly since we find (Y is negative and so a more 
detailed determination of non-singular background terms might be necessary to determine 
a accurately. Our results do support the prediction of the droplet theory that there are large 
sample-to-sample variations in the susceptibility at Tc. 
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